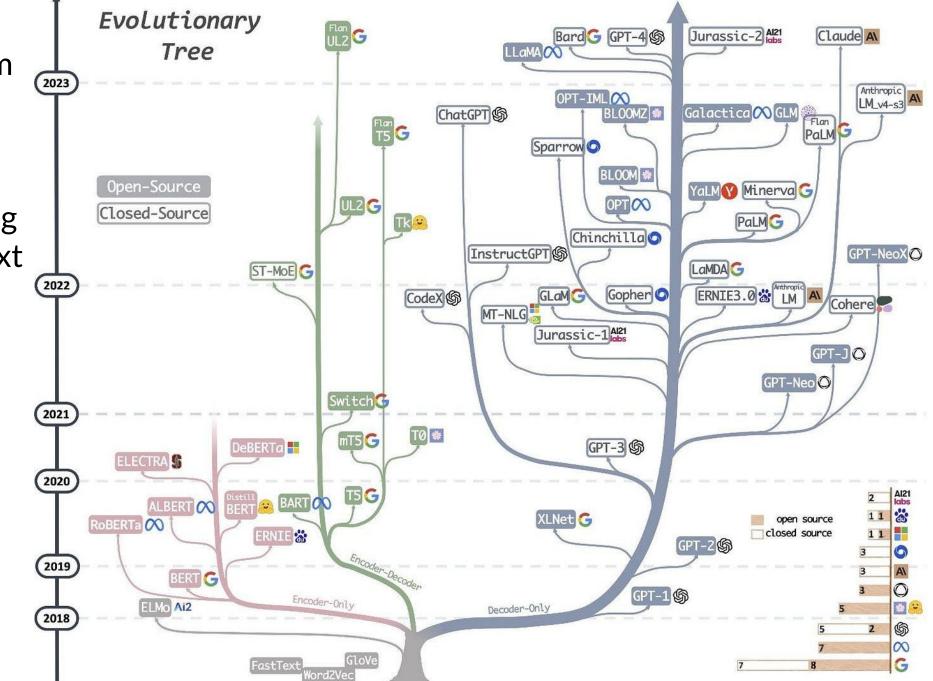
InnoVAET: Generative AI for Mapping Patents and Firm Innovation

Paper at: tiny.cc/innovaet

Zhaoqi "ZQ" ChengBoston UniversityDokyun "DK" LeeBoston UniversityPrasanna "Sonny" TambeUPenn

Generative Al's Powerful Capability Summarized

What I cannot create, I do not understand


- Richard Feynman

- Learn to generate any complex object (e.g., images, documents, patents, jobs, firms, portfolios, consumers, digital twin of anything)
- Doing so, learns object space and compositions in scale
- Trained model can then:
 - 1. Map out the object space and provide deeper insights (compare & contrast)
 - 2. Augment purposeful synthesis of a new and creative object
 - 3. Do 1 and 2 at incredible scale and speed

- Many mainstream LLMs (ChatGPT) are decoder only model
- Works by learning to predict the next words in long word context
- Not appropriate for mapping & representation that can provide comparisons and insights.

Visual Source

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

Research Questions

- Can we harness generative AI for meaningful representation of business objects to aid exploration, understanding, action?
- And how is the representation useful?

Answer

Disentangled Representation Learning Via VAE transformer enables managerial action that otherwise wouldn't be possible as they provide

Granular and Uncorrelated dimensions that

- 1) Define the problem and business object space
- 2) More importantly, each dimension is constrained so that variations within it affect only specific properties of the underlying business object attribute, while all other properties remain unaffected.

Disentangled Representation Learning (DRL)

Here are 1 million sample of cylinders.. Find me the disentangled representation space so I can manipulate each dimensions to create different cylinders I like

Disentangled Representation Learning Algorithm

and Height are the only two dimensions you need to represent and generate all kinds of cylinders to your taste!

I see that Radius

Volume and Surface Area are something I like. Much representation. Wow.

NOT Disentangled Representation Learning Algorithm

So what if we don't have DRL? The Sauce Jar Problem

Say a resourceful cook named Tim just made a avant-garde dish with just

- Peanut Butter (Sweet and Salty)
- Vinaigrette (Sour and Salty)

Upon tasting, Tim finds **sweetness** and **sourness** at the perfect level. But it needs to be **saltier**.

With DRL

Tim's dish is now perfect.

I got salt 🙂

DRL for Business Action – Resource Allocation Problem by Tim Cook

We will enter the healthcare market. Upon applying InnoVAET, we see that we need to spend more R&D on "Diagnostics" capabilities to catch up to potential competitors like Abbott and Medtronics

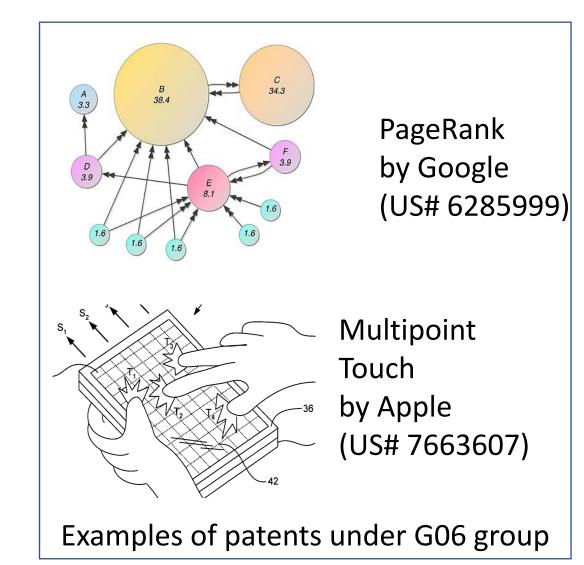
InnoVAET: a Variational AutoEncoder Transformer for Patents

InnoVAET estimates disentangled representations of patents

- Map patent text (e.g., claims) into an interpretable, spatial representation of firms' innovative activities.
- Innovation Space (IS) enable explorations into patents, innovation, and firms

Here are samples of computing patents (x-vars and claims text)

Disentangled Representation Learning Algorithm


Factors of Innovations that comprise these group of patents are: Security, Human-Computer Interaction, etc Good disentangled representation (Innovation Space) enables you to ask and explore:

- 1. What could you get if you combine patent A and B? (automate combinational creativity)
- 2. How unusual is a patent (e.g., iPod interface) with respect to specific technological factor (e.g., user-interface)?
- 3. What innovation factors inc/dec over time?
- 4. Rank companies in technological factor X (extracted from claims by the algo)
- 5. If I am firm A, what innovation do I need to boost up to be more like Firm B?
- 6. How do firms move in Innovation Space over time and how does that correlate to some performance?
- 7. What happens to innovation activity in specific technological region after event X (i.e., acquisition, mergers)

8. etc

Data Context

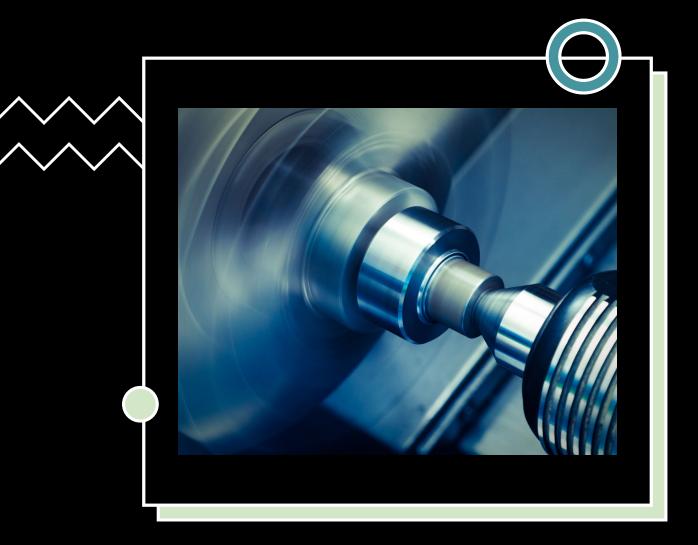
•US Patents on AI & computing systems
•583,841 patents between 1976 to 2019

Example Innovation Factors (Disentangled Axis)

- Pictorial Communication
- Controlling Combustion Engines
- IT for Administration & Management
- Healthcare Informatics
- Diagnostics and Surgery
- Electric Data Processing
- Etc

Semantic structure of latent space (Patent Fusion)

$$\mathbf{z}^{(\text{fused})} = \mathbf{z}^{(a)} + \mathbf{z}^{(b)}$$


#5873080 Using multiple search engines to search multimedia data #7689506 System and method for rapid updating of credit information

#5162638 Process for protection against fraudulent use of smart cards, and device for use of the process

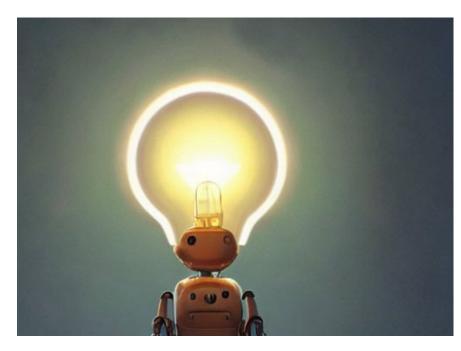
Innovation Factor	Top 3 Firms	4-digit NAICS Code	Innovation Index
Pictorial Communi- cation	TDK Corp Canon Inc Fujifilm Hldgs Corp	3344 (Semiconductor and Electronic Components)3333 (Commercial and Service Industry Machinery)3259 (Other Chemical Product and Preparation)	1.5016 1.3388 1.2873
Controlling Com- bustion Engines	Nissan Motor Co Ltd Toyota Motor Corp Cummins Inc	3361 (Motor Vehicle Manufacturing) 3361 (Motor Vehicle Manufacturing) 3336 (Engine, Turbine, and Power Transmission)	0.7622 0.6439 0.5601
IT for Administra- tion & Management	Booking Holdings Inc Convergys Corp MCI Inc	5191 (Other Information Services) 5614 (Business Support Services) 5171 (Wired Telecommunications Carriers)	1.7784 1.5458 1.4633
Healthcare Infor- matics	Masimo Corp Dexcom Inc Checkfree Corp	3345 (Navigational, Measuring, Electromedical) 3345 (Navigational, Measuring, Electromedical) 5619 (Other Support Services)	0.5326 0.5239 0.5043
Diagnosis & Surgery	Fresenius Medical Care St Jude Medical Inc Zoll Medical Corp	6214 (Outpatient Care Centers) 3345 (Navigational, Measuring, Electromedical) 3345 (Navigational, Measuring, Electromedical)	1.0033 0.8583 0.7693
Electric Digital Data Processing	Western Digital Corp Netlogic Microsystems Inc Cavium Inc	3341 (Computer and Peripheral Equipment) 3344 (Semiconductor and Electronic Components) 3342 (Communications Equipment)	1.4727 1.4395 1.3723

Entrant	Incumbent	Factors of Technology Gap	Technology Gap
Apple	Medtronic	Diagnosis; Surgery; Identification Electro, Magnetic, Radiation and Ultrasound Therapy Measuring Electric and Magnetic Variables	0.3875 0.2849 0.2562
	Johnson & Johnson	Diagnosis; Surgery; Identification Healthcare Informatics Controlling Non-Electric Variables	0.4531 0.1408 0.1197
	Abbott	Diagnosis; Surgery; Identification Radio Navigation Healthcare Informatics	0.3113 0.2181 0.0994
Google	Medtronic	Diagnosis; Surgery; Identification Measuring Electric and Magnetic Variables Electro, Magnetic, Radiation and Ultrasound Therapy	0.3766 0.3247 0.2333
	Johnson & Johnson	Diagnosis; Surgery; Identification Controlling Non-Electric Variables Healthcare Informatics	0.4422 0.1635 0.1310
	Abbott	Radio Navigation Diagnosis; Surgery; Identification Healthcare Informatics	0.3502 0.3004 0.0896

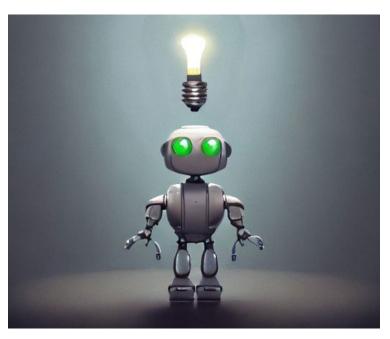
(b) Healthcare market

Patent Level Exploration

We can use geometric analyses of patents in innovation space to categorize, patents into combinational vs transformative patents.



Why Not


- **Products** in Feature Spaces (Customer Reviews)
- Products in Wish-Feature Spaces (Customer Feedback, Complaints)
- Brands in Personality Spaces (Social Media Data)
- Assets in Risk Spaces (10K, earnings report, analyst report)
- Jobs in Skill Spaces (Job Description Data)
- Firms in Business Strategy Spaces (Pitchbook, 10K, etc)
- Etc...

Takeaways

- InnoVAET is an exploratory tool
- This approach enables interpretation, comparison, visualization, and augmented creation of any multimodal business object
- Generative AI can be used to map out a competitive landscape for strategic action

Thank you!

Manuscript at Tiny.cc/innovaet